STEREO HI-FI

MODEL: CR280 TECHNICAL SERVICE DATA

Entertainment Products Group - Sylvania Electric Products Inc.- 700 Ellicott Street - Batavia, N.Y.

MODEL: CR280 CHASSIS: R49-3

CHASSIS IDENTIFICATION

Chassis Identification consists of two blocks of numbers. In all correspondence relating to a specific model, both blocks of numbers, plus the cabinet model number should be given. To associate a chassis with its proper schematic, refer to the number breakdown described below:

CODE CHANGES

To assist in identifying changes in electrical components, a system of adding a suffix number to the schematic parts coding number is used. All parts changes are indicated on either partial or complete schematics, and also in the parts list. For example, a part coded "R100" on the initial production chassis changes to "R100-1" when first revised in value; "R100-2" on the second revision, and so on.

CHASSIS REMOVAL

1. Remove two (2) screws from bottom of cabinet near sides. 2. Remove six (6) screws securing back cover to cabinet.
2. Remove four (4) slide control knobs by pulling straight away from escutcheon.
3. Control escutcheon is secured to cabinet by spring clips. Remove by pulling away from cabinet at slide control end.
4. Remove four (4) screws at outer corners of chassis securing chassis to cabinet.
5. Remove chassis and back cover as one unit from front of cabinet.

LAMP REPLACEMENT

Remove chassis. Use \#259 bulb, Sylvania Part \#30-26288-1 for dial lamp and tuning meter lamp replacement.

Use \#45 bulb, Sylvania Part \#30-62495-45 for Multiplex lamp replacement.

IMPORTANT: Always use genuine Sylvania replacement parts and tubes.

SERVICING THE STEREO HI-FI AMPLIFIER

Stereo Hi-Fi Amplifier circuits are much easier to service than many other circuits, inasmuch as there are two identical amplifiers right before you for comparison. Use the function switches and controls to locate the trouble area, then pinpoint the defective component within the area.

As an aid to parts identification, blocks of numbers have been ass igned to circuits in this chassis - ie:
0-200 Block - AM /FM - MULTIPLEX tuner.
300 Block - Left Channe1 Phono Preamp.
400 Block - Right Channel Phono Preamp.
500 Block - Items common to both L \& R Channels.
600 Block - Left Channel Preamp and Tone Circuits.
700 Block - Right Channel Preamp and Tone Circuits.
800 Block - Left Channel Power Amplifier Circuit.
900 Block - Right Channel Power Amplifier Circuit.
Tuner pins and wire connections are labeled with a single letter whenever possible.

Left and right channel audio amplifier connections are double lettered, with the first letter indicating the channel, ie: LB (Left) or RB (Right).

Visual inspection of components will often disclose overheated parts. A good magnifying glass will be very helpful when checking the printed circuit panel for cracked foil or poor solder joints. Thermal noise may be generated by resistors or transistors that "look like new" as well as other components. Use a heat lamp and aerosol cooler to isolate these troubles.

Remember that schematic voltages are not absolute - they will vary due to normal production tolerances. The primary AC supply ($120 \mathrm{~V}, 60 \mathrm{~Hz}$) will influence B plus greatly. Compare voltages for the right and left channels when suspecting trouble in a certain amplifier stage. The use of a modern, high impedance VOM, or preferably, a VTVM is a 'must' for checking transistor voltages. Be very careful with your instrument probes when working on transistor circuits - even a momentary short between Base and Collector can destroy the transistor.

Stage gain may be checked by touching the Collector and then
the Base of a transistor with your finger. You will hear a hum from the Collector, and an appreciably louder hum when you touch the Base. Bear in mind that there is no AC voltage gain in the driver and output stages of this amplifier, and also that an inoperative transistor will often pass some signal, but without gain.

A word about replacing solid state devices in these tuner and amplifier circuits - whenever possible, we give the E.I.A. number PROVIDING that the "off-the-shelf" part will restore operation of the instrument to meet factory specifications. However, Sylvania part numbers only are given whenever the transistors or diodes are specifically "paired", or selected for Beta, P.I.V., low noise, etc., and replacement by any "off-the-shelf" item may, or may not, restore operation to meet factory 'specs'.

When servicing Solid State amplifier and tuner circuits, always observe the following rules:

1. BE SURE all test equipment is free from leakage and isolated from the power line.
2. Use non-inductive dummy loads of at least 3 ohms total resistance - 8 ohm loads are nominal. NEVER use single speakers or combinations of speaker systems of less than 3 ohms total impedance. Momentarily shorted or open outputs will not damage the output stages of this amplifier. However, a continuous shorted output condition can cause serious damage within a relatively short period of time.
3. Always unplug the power cord from the $120 \mathrm{VAC}, 60 \mathrm{~Hz}$ supply before replacing components.
4. Use a low wattage, pencil type iron to ensure minimum heat application. Heat sink each lead on solid state devices. An alligator clip will serve quite well as a heat sink in most cases.
5. Be sure that.mounting surfaces for power transistors are clean and free from burrs. Use silicon grease liberally (both sides of mica insulators when used) when mounting power transistors. Be sure that power transistors are positioned so that the mounting surface is in full, snug contact with the heat sink and that leads clear adjacent chassis or heat sink metal.

CIRCUIT DESCRIPTION (AMP)

POWER SUPPLY

T502 (power transformer) provides necessary line isolation for this chassis, and also furnishes stepped-down voltages for the bridge rectifier circuit, plus 6.3 volts for dial, meter and stereo lamp operation. All DC working voltages for the amplifier and tuner circuits are supplied by the bridge circuit.

RIPPLE REDUCER

Q502 is used in a "ripple reducer" circuit which removes the B^{+}ripple caused by load current. With a Zener diode (SC500) establishing a 15.6 volt reference for Q502, the circuit output is a clean, constant 15 VDC supply for the magnetic preamplifiers (IC502A), the voltage amplifiers (IC502B) and the AM-FMMULTIPLEX tuner circuits.

IN TEGRATED CIRCUIT

This R49 amplifier features a monolithic integrated circuit which contains four operational amplifiers. Each section conof a Darlington in put circuit, a differential amplifier, three output transistors, diodes for voltage stability and temperature compensation, plus several resistors.

Two sections of this integrated circuit are used in Left and Right channel magnetic preamp. circuits preceding the function switch. The balance of IC502 serves as Left and Right channel voltage amplifier following the function switch.

It is strongly recommended that the integrated circuit be removed from its' socket before checking associate components for 'shorts', 'opens' or value changes to prevent possible damage to internal IC components.

CONTROLS

R616 (BASS) and R622 (TREBLE) are dual ganged slide-type controls of the conventional passive type used in a normal cutboost tone circuit. These controls permit adjustment of Bass or Treble response of left and right channels simultaneously, while passing the mid-range frequencies (around 1 kHz) almost
unchanged. Tone control center position gives "as recorded, or transmitted" reproduction.

R610 (BALANCE) control is also of the slide type. It shunts a selected portion of the audio signal to ground, thus equalizing left and right channel outputs.

Design of the dual ganged LOUDNESS slide-type control (R624) with tap compensation is in accordance with the FletcherMunson studies, which indicate a definite hearing deficiency at lower frequencies in all average persons, especially at lower listening levels.

POWER AMPLIFIER SECTION:

From the loudness control, the audio signal enters the Power Amplifier panel, and is AC coupled to the Base of a Voltage Amplifier (Q802, Q902). AC and DC feedback from the output stage is applied to the emitter of this voltage amplifier through R806 or R906 to ensure good frequency response with minimal distortion.

BIAS REGULATOR:

The purpose of Q806 is to provide proper bias for the complementary drivers (Q808, Q810) and power output transistors (Q812, Q814), as well as ensuring thermal circuit stability under varying operating conditions. Basically, Q806, R812, R814 and R816 function as a variable diode. Proper bias adjustment consists of adjusting R814 for a reading of 10 to 20 mV across R 828 with the loudness control at MINIMUM (to ensure a "no-signal" condition).

When troubleshooting this circuit, NEVER power the circuit without the bias regulator (Q806, Q906) in the circuit. Without the limiting diode action of the bias transistor, the resistor dividing network will supply a voltage of sufficient amplitude to ensure instant destruction of driver (Q808, Q810) and output (Q812, Q814) transistors.

PRE-DRIVER, DRIVER AND OUTPUT STAGES

Q804 (pre-driver) drives Q808 and Q810 simultaneously. An audio signal of one polarity increases collector voltage of Q804, which in turn increases conduction of the Q808 driver and Q814 output combination. During this half-cycle, Q810 driver and Q812 output combination remain at an idle. The opposite half-cycle reduces collector voltage of Q804, increases conduction of Q810 and Q812 while Q808 and Q814 remain at an idle

With both driver and output stages biased in class AB, the correct idle current is most important for proper amplifier performance. Insufficient idle current will cause crossover distortion. High idle current will cause low amplifier output.

C806 is a bootstrap capacitor for the pre-driver (Q804) collector. It reduces hum and distortion within the circuit, and also allows the output signal to swing closer to the supply voltage, thus providing slightly higher output.

PERFORMANCE ANALYSIS

Maintain line at $120 \mathrm{~V}, 60 \mathrm{~Hz}$ for all tests.

8 ohm, 50 watt resistive load to be connected across each channel output before any of the following performance checks are made.

Adjust bias pots (R814, R914) for $15 \mathrm{mV} \pm 10 \%$ across R 828 , R928 with loudness control set at minimum to ensure "no signal" condition.

SENSITIVITY - PHONO:
CHASSIS equivalent impedance is $330 \mathrm{~K}, 10 \%$ resistor with 330 ohm divider.

Adjust controls as follows:
Loudness - Maximum.
Bass \& Treble - Mechanical Center.
Balance - Mechanical Center.
Select "PHONO" and "STEREO" functions.

Connect a 600 ohm impedance audio generator to both PHONO inputs through correct equivalent impedance.

This chassis requires $6 \mathrm{mV} \pm 3 \mathrm{db}$ at 1 kHz for an output level of 1 watt (2.8V - R.M.S. - measures across 8 ohm load resistor). Channel output difference shall be 4 db or less.

SENSTIVITY - TAPE:
Connect a 600 ohm impedance audio generator to both TAPE inputs through $10 \mathrm{~K}, 10 \%$ resistors. Adjust controls as under Phono sensitivity.
Select "TAPE" and "STEREO" functions.
This chassis required $55 \mathrm{mV} \pm 3 \mathrm{db}$ at 1 kHz for an output level of 1 watt (2.8 V - R.M.S. - measured across 8 ohm load resistor).

TONE CONTROL RANGE:
Connect a 600 ohm impedance audio generator to both PHONO inputs through correct equivalent impedance (See SENSITIVITY - PHONO).

Adjust controls as follows:
Loudness - Maximum.
Balance - Mechanical Center.
Bass \& Treble - Mechanical Center, initially.
Select "PHONO" and "STEREO" functions.

CONTROL, GEN. FREQ. CUT

Bass -100 Hz	$-9 \mathrm{db}, \pm 3 \mathrm{db}$	$+10 \mathrm{db}, \pm 3 \mathrm{db}$
Treble -10 kHz	$-13 \mathrm{db}, \pm 3 \mathrm{db}$	$+9 \mathrm{db}, \pm 3 \mathrm{db}$

POWER OUTPUT:
Connect a 600 ohm impedance audio generator to both PHONO inputs through correct equivalent impedance (See SENSITIVITY - PHONO).

Adjust controls as follows:
Loudness - Maximum.

Bass \& Treble - Mechanical Center.
Balance - Adjust for equal $\mathrm{R} \& \mathrm{~L}$ channel output.
Select "PHONO" and "STEREO" functions.
Adjust generator for amplifier output of 8 watts (8 volts - R.M.S. - measured across 8 ohm load resistor) at each frequency specified.
$100 \mathrm{~Hz}-2 \%$ Total Harmonic Distortion (Nominal). $1000 \mathrm{~Hz}-2 \%$ Total Harmonic Distortion (Nominal). $10 \mathrm{kHz}-2 \%$ Total Harmonic Distortion (Nomina1).

CHANNEL SEPARATION:
Apply signal to one phono input, with opposite phono input terminated with appropriate impedance (See SENSITIVITY PHONO).
Adjust controls as follows:
Loudness - Maximum.
Bass \& Treble - Mechanical Center.
Balance - Mechanical Center.
Select "PHONO" and "STEREO" functions.

Adjust signal generator for amplifier output of 3 watts (5V R.M.S. - measured across 8 ohm load resistor) on driven channel at each frequency noted below. Measure crosstalk from right into left amplifier, then from left into right.

FREQUENCY	CROSSTALK LIMITS
100 Hz	$40 \mathrm{db}-$ typical
1000 Hz	$30 \mathrm{db}-$ typical
10 kHz	$20 \mathrm{db}-$ typical

HUM AND NOISE:

Terminate both phono inputs with appropriate impedances (See SENSITIVITY - PHONO).
Adjust controls as follows:
Bass \& Treble - Mechanical Center.
Balance - Mechanical Center.
Select "PHONO" and "STEREO" functions.
Measure hum and noise across 8 ohm load resistors.

Loudness control MINIMUM - 1.5 mV - Typical.
Loudness control MAXIMUM - 25mV - Typical.
Terminate both TAPE inputs with $10 \mathrm{~K}, 10 \%$ resistors - select "TAPE" and "STEREO" functions.

Balance, Bass and Treble controls at mechanical center.
Loudness control MAXIMUM -25 mV typical across 8 ohm loads.

CONTROL PANEL (BOTTOM VIEW)

FUNCTION SWITCH (TOP VIEW)

R454 R304 R302 R128 R121 R358 R402 R406 R356 R354 R404 R352 R124 R118 R116R114R122R112 R126

* SEE SCHEMATIC

SCHEMATIC	SERVICE	
CODING	PART NO.	DESCRIPTION

C2	$42-32806-2$	Main Tuning Gang
C8		330 PF
C12		330 PF
C14	.01	
C16	.01	
C18	.01	
C20	.01	
C22		330 PF
C24		5.6 PF
C26		$12 \mathrm{PF}, \mathrm{N} 330$
C28	$42-18146-1$	$1-6 \mathrm{PF}$ Ceramic Trimmer
C30		6.8 PF

C32
C34
C36
C38
C 38
C 39
C42
C46
C4
C50
C 52
C 54
C56
C58
C6
C66
C6
C 7
C 7
C7
C78
C8
C8
C8
C 90
C 92
23765-5
.01
.05
C96
Clo
C1 02
C 104
C 105
Cl 06
C107
C110
C111
C112
C112

C
c
C
C 1
C 1
C
Cl
Cl
C 13
C 132
C134
Cl 34

SCHEMATIC SERVICE
CODING PART NO.

CAPACITORS (CONT'D)

C136		22
C138		22
C140		22
C142		22
C148	.01	
C150		.00
C302	$41-32477-85$	$1 / 50$
C304	$41-32477-37$	10
C304	$41-32477-48$	25
C306		.04
C308		.15
C310	$41-32477-85$	1

C352 $41-32477-85 \quad 1 / 50 \mathrm{~V}$ Electrolytic
C354 41-32477-38 250/16V Electrolytic (Early Prod.)

C354 41-32477-48 25/25V Electrolytic
C356 41-32477-46 5/25V Electrolytic
C358 . 047
$\begin{array}{lll}\text { C402 } & 41-32477-46 & 1 / 50 \mathrm{~V} \text { Electrolytic } \\ \text { C404 } & 41-32477-37 & 100 / 15 \mathrm{~V} \text { Electrolytic (Early Prod.) }\end{array}$
C404 $41-32477-48 \quad 25 / 25 V$ Electrolytic
C406 . 047
$\begin{array}{lll}\text { C410 } & 41-32477-85 & 1 / 50 \mathrm{~V} \text { Electrolytic } \\ \text { C452 } & 41-32477-85 & 1 / 50 \mathrm{~V} \text { Electrolytic }\end{array}$
C454 41-32477-38 250/16V Electrolytic (Early Prod.)

C454 41-32477-48 25/25V Electrolytic
C456 41-32477-46 5/25V Electrolytic
C458 . 047

C502 43-98665-6 .005/150VAC
C504 43-98665-5 .005/150VAC
C506 . 01
C508 41-32934-1 . 0
C513
C514

C525	$43-97665-6$
C610	
C612	

C614
C616
C618 -
C710
C712 .
C718 022
C802 . 047
C803 220PF
C806 41-23765-7 25/25V Electrolytic

C808	47 P
C809	

C810	$41-32477-67$	$500 / 35 \mathrm{~V}$ Electrolytic
C902		.047
C903		220 PF
C904	$41-23765-7$	$25 / 25 \mathrm{~V}$ Electrolytic
C906	$41-23765-7$	$25 / 25 \mathrm{~V}$ Electrolytic
C907		220 PF
C908		47 PF
C909		220 PF
C910	$41-32477-67$	$500 / 35 \mathrm{~V}$ Electrolytic

RESISTORS (All Carbon, 1/2W, 10\% unless otherwise specified)

R4	680
R6	150
R10	$100,1 / 4$ Watt
R11	6.8 K
R12	2.7 K
R14	1 K
R16	2.7 K

SCHEMATIC CODING	SERVICE PART NO.	DESCRIPTION
RESISTORS		
R18		10K
R20		3.9 K
R22		100K, 1/4Watt
R24		1 meg .
R26		68 K
R28		1 K
R30		6.8K, 10\%
R31		270
R32		1.2K, 5\%
R34		120
R36		470
R38		1 K
R40		10K
R42		2.2 K
R44		470
R46		22K, 5\%
R48	37-14576-11	120K Thumbwheel - AGC, Meter Adi.
R50		470
R52		120
R53		2.2 K
R54		3.9K, 5\%
R56		10K
R58		270
R60		1.8 K
R62		560
R64		560
R66		1K, 1/4Watt
R68		470
R70		120, 1/4Watt
R72		560
R74		560
R76		6.8K, 5\%
R78		6.8K, 5\%
R82		1 K
R84		1.8K, 5\%
R86		100, 5\%
R88		1 K
R92		15K
R94		8.2 K
R96		5.6 K
R97		680
R98		1 K
R99		68 K
R100		100K
R101		180K
R102		22K, 5\%
R104		180K, 5\%
R106		560 K
R108		470K
R110		39 K
R112		180K, 5\%
R114		68K, 5\%
R116		330, 5\%
R117		180K
R118		1.8 K
R120		1.8 K
R121		22K
R122		10K
R123		6.8 K
R124		270 K
R125		1 K
R126		2.2 K
R128		1.5 K
R130		2.2 ohms, 5\%
R132		10K
R134		10K
R136		10K
R138		10K
R140		82K
R142		82K
R144		18 K
R146		18 K
R148		15K

SCHEMATIC CODING	SERVICE PART NO.	DESCRIPTION
RESISTORS (CONT'D)		
R302		100K
R304		47
R306		1.8 K
R352		270K
R354		47 K
R356		68
R358		3.3 K
R360		10K
R402		100K
R404		47
R406		1.8 K
R452		270K
R454		47K
R 456		68
R458		3.3 K
R460		10K
R502		$3.3 \mathrm{meg}, 20 \%$
R505		10 ohm
R506		8.2 K
R508	36-62455-57	220, 10 Watt
R510		22
R512		180
R516		1 K
R518		1.5 K
R530		18K (Early Prod.)
R530		27 K
R536		47 K
R538		47 K
R540		47K
R542		47 K
R544		220
R546		220
R548		82
R610	37-32453-1	500K Balance Control
R614		33K
R616	37-32452-2	250K Dual Bass Control
R618		10K
R620		22K
R622	37-32452-2	250K Dual Treble Control
R624	37-32452-1	500K Dual Loudness Control
R626		15K
R714		33K
R718		10K
R720		22K
R726		15K
R802		560K, 1/4 Watt-5\%
R804		680K, 1/4-5\%
R806		22K, 1/4 Watt
R808		6.8 K
R810		100,5\%
R812		820
R814	37-14576-5	1 K Thumbwheel Pot - Bias Adiust
R816		560
R818		4.7 K
R820		4.7 K
R822		120
R824		120
R826		100
R828	36-62454-1	1 shm, 5 Watt
R902		560K, 1/4 Watt - 5%
R904		680K, 1/4 Watt - 5\%
R906		22K, 1/4 Watt
R908		6.8 K
R910		100,5\%
R912		820
R914	37-14576-5	1 K Thumbwheel Pot - Bias Adjust
R916		560
R918		4.7 K
R920		4.7K
R922		120
R924		120
R926		100
R928	36-62454-1	1 ohm, 5 Watt

SCHEMATIC CODING	SERVICE PART NO.	DESCRIPTION
SOLID STATE DEVICES		
IC502	15-34005-1	Dual Channel IC - Early Prod.
IC502	15-34202-1	Dual Channel IC
L16	22-28072-2	Ferrite Bead
L17	22-28072-2	Ferrite Bead
L19	22-28072-2	Ferrite Bead
L21	22-28072-2	Ferrite Bead
L30	22-28072-2	Ferrite Bead
Q2	13-28654-1	FM RF Amp.
Q4	13-32366-1	FM Mixer
Q6	13-32364-1	FM Oscillator
Q8	13-32366-2	1st AM/1st FM IF
Q10	13-32366-1	2nd AM/2nd FM IF
Q12	13-32366-1	3rd FM IF
Q14	13-32366-1	4th FM IF
Q16	13-29033-3	Voltoge Amp
Q18	13-29033-3	Muting Amp
Q20	13-32362-1	AM RF Amp.
Q22	13-18951-1	$A M$ Converter
Q24	13-18365-1	Composite Amp
Q26	13-18365-1	38 kHz Amp
Q502	13-28471-1	Ripple Reducer
Q802	13-26386-3	Voltage Amplifier
Q804	13-34001-1	NPN Darlington
Q806	13-29033-3	Bias Regulator
Q808	13-34003-1	Driver
Q810	13-34004-1	Driver
Q812	13-34002-1	Power Output
Q814	13-34002-1	Power Output
Q902	13-26386-3	Voltage Amp
Q904	13-34001-1	NPN Darlington
Q906	13-29033-3	Bias Regulator
Q908	13-34003-1	Driver
Q910	13-34004-1	Driver
Q912	13-34002-1	Power Output
Q914	13-34002-1	Power Output
SC2	1N3182	Diode - Varicap
SC4	IN295	- Meter Protection
SC6	1N295	- AM Detector
SC8,SC10	1N542MP	- Ratio Det. (MATCHED PAIR)
SCl2	13-27596-5	- Rectifier
SCl 4	1 N295	- 19kHz Doubler
SCl 6	1N295	- 19kHz Doubler
SC18	13-17596-5	- Clamp
SC20	13-17596-5	- Muting Switeh
SC22	13-17596-5	- Multiplex Matrix
SC24	13-17596-5	- Multiplex Matrix
SC26	13-17596-5	- Multiplex Matrix
SC28	13-17596-5	- Multiplex Matrix
SC302	13-17596-5	- Overload Protect.
SC402	13-17596-5	- Overload Protect.
SC500	13-14879-5	- Zener
SC502	13-29165-1	- Rectifier
SC504	13-29165-1	- Rectifier
SC506	13-29165-1	- Rectifier
SC508	13-29165-1	- Rectifier
SC802	13-17596-7	- Bias
SC902	13.17596-7	- Bias
SCR2	13-18924-1	- S.C.R.
	72-27200-3	Large 3 pin Transistor Socket
	86-28669-1	Power Xistor - Mica Insulator
	72-28852-1	- Socket
	70-28659-1	- Mounting Clip
	72-27200-1	Small 3 pin Transistor Socket

COILS AND TRANSFORMERS

L2	$50-26574-14$	Coil - FM RF
L4	$50-10260-4$	-2.2 UH
L8	$50-11378-5$	$-3.3 U H$
L10	$50-26574-15$	-FM Interstage
L14	$50-26574-19$	-FM Oscillator
L15	$50-18899-3$	-5.7mH Choke
L16	$22-28072-2$	Ferrite Beod

SCHEMATIC SERVICE
CODING PART NO. DESCRIPTION

COILS \& TRANSFORMERS (CONT'D)

L17	22-28072-2	Ferrite Bead
L18	50-18789-3	5.7 mH Choke
L19	22-28072-2	Ferrite Bead
L20	50-15318-1	27UH Choke
L23	27-32358-1	Loop - Iron Core AM (Early Prod.)
L23	27-32358-3	- Iron Core AM
L24	50-28413-1	Coil - AM RF
L28	50-32367-1	- SCA Trap
130	22-28072-2	Ferrite Bead
L502	50-26001-3	100UH Choke
T2	50-26573-1	FM Balun
T4	50-26580-8	Transformer - 1 st FM IF
T6	50-26580-9	- 2nd FM IF
T8	50-26580-10	- 3rd FM IF
T10	50-26584-1	- Ratio Detector
T12	50-26583-3	- 1st AM IF
T14	50-26583-4	- 2nd AM IF
T16	50-28411-1	- AM Oscillator
T18	50-26575-1	- 19 kHz
T20	50-26579-2	$-38 \mathrm{kHz} \text { (use w/3300PF }$ Cap.)
T20	50-32591-1	- 38 kHz (use $w / 5600 \mathrm{PF}$ Cap.)
T502	55-32972-1	- Power

MISCELLANEOUS PARTS

CB502	29-33346-8	Circuit Breaker (1.25A)
SK504	73-15073-1	Socket - Aux. Power
SK506,SK508	73-98079-2	Dual Phono Socket - PHONO IN
SK510,SK512	73-98079-2	- REM. SPKRS.
SK514,SK516	73-98079-2	- TAPE IN
SK518,SK520	73-98079-2	- TAPE OUT
SK522,5K524	73-98079-2	- MAIN SPKRS.
SK526	73-26338-3	Headphone Jack
SW502	33-28756-1	Complete Function Switch Asm.
	33-28756-1 05	AFC Switch Section Only
	33-28756-104	AM or FM SwitchSection Only
	33-28756-100	ON-OFF/AUTO Switch Section Only
	33-28756-102	PHONO or TAPE Switch Section Only
	33-28756-101	STEREO Switch Section Only
SW504	89-14500-1	Lever Switch Asm. - Speaker Select.
SW508	33-26638-1	MUTE Slide Switch
	73-26931-2	Antenna Terminals - FM
	73-33071-41	Cord - AC Power
	70-99257-4	Dial. Clip (tape-to-carriage)
	77-34029-1	- Drive Spring
	86-28943-1	- Light Box
	74-28921-2	- Light Diffuser
	74-28922-5	- Tape (Tuning Indicator)
	77-28439-1	- Tape Drive Spring
	86-28436-2	- Tape Holder
	86-28433-1	- Tape Roller
	86-28434-1	- Tape Roller Holder
	85-28937-9	Jack Plate
	30-26288-1	Lamp - Dial \& Meter (\#259)
	30-62495-45	- Multiplex Ind. (\#45)
	73-28247-7	Socket - Dial Lamp
	73-32463-1	- Meter Lamp
	73-26694-1	- Multiplex Lamp
	70-84346-25	- Mounting Ring (mpx. \& meter lamp)
	25-22604-4	Tuning Meter - Early Prod.
	25-22604-7	- Later Prod.
	70-26679-1	- Mounting Nut
	74-28923-1	Tuning Thumbwheel - w/Metal Shaft
	70-1 4098-1	- Nylon Bearing

CIRCUIT DESCRIPTION (TUNER)

This tuner shares a printed circuit panel with the amplifier circuits. The R49 tuner covers both the AM broadcast band (5401610 kHz) and FM broadcast band ($87.9-108.5 \mathrm{MHz}$).

Especially noteworthy from a servicing standpoint are the top and bottom roadmaps on the printed circuit panel and the use of socket mounted transistors throughout.

The tuner supply voltage (plus 15 V) is taken from the amplifier supply and applied to the tuner through a ripple reducer circuit (Q502) and regulated by SC506, a Zener diode.

Q8, Q10, Q16, Q18, Q20, Q24 and Q26 receive power (plus 15 V) whenever the amplifier is switched on. Q2, Q4, Q6, Q12 and Q14 receive power only when the FM function is selected; Q22 receives power only when the AM function is selected.

As the FM pushbutton is depressed, the rear D.P.D.T. portion of the switch applies power to selected circuits as outlined above. Simultaneously, the front D.P.D.T. portion of the FM switch removes ground from pin L (FM MONO output). FM audio travels through the STEREO/MONO switch (rear section) through the FM switch (front section), through the TAPE switch (front section), to pins LE (left channel input) and RE (right channel input). The Stereo FM outputs (pins P and Q) remain floating.

Stereo FM reception is very similar, except that pins P and Q are connected to the circuit through the rear section of the STEREO/MONO switch when the switch is depressed, and pin L remains floating.

FM PERFORMANCE

Useable FM Sensitivity (I.H.F.) @ 106 MHz	2.5 uV
20db Quieting (106MHz)	1.6 uV
Image Rejection @ 106 MHz	60 db
Distortion at 75 kHz deviation $(400 \mathrm{~Hz}) 1100 \mathrm{uV}$ Input	0.6%
Maximum FM S/N ratio (75 kHz dev., 1100 uV Input)	60 db
Stereo Separation (1 kHz)	28 db
Maximum Output (100% modulation @ 400 Hz	$.47 \mathrm{~V}-\mathrm{RMS}$

FM RF, OSCILLATOR and MIXER STAGES

RF Signals pass through the FM balun (T2) to the first tuned circuit formed by L2 and the first section of the main tuning gang. The tank circuit is a frequency selective circuit which allows only a small band of frequencies to pass. The selected frequencies are then applied to the gate of Q2, a N channe1 field effect transistor, for amplification. The output of Q2 passes through a second tuned circuit (C2C, L10) which gives even more frequency selectivity. The signal is then AC coupled to the base of Q4 - the FM Mixer stage. A locally generated unmodulated signal is produced in the FM oscillator circuit of Q6. The oscillator frequency is determined by the tank circuit formed by L14 and the third section of the tuning gang C2E. The oscillator signal is AC coupled to the emitter of Q4. Mixing or heterodyning of the RF and oscillator frequencies in Q4 produce the 10.7 mc IF frequency. Correction of minor frequency drift is the function of the varicap diode. A variation in the detected signal, which contains a DC component as well as audio frequencies, changes the bias on SC2, and thus effectively changes the capacity across L14.

FM IF and DETECTION

There are four FM IF stages in the R19 chassis, two of which share transistors with the AM portion of the receiver. T4, T6 and T8 are tuned to 10.7 MHz - the IF frequency. N ote the Beads, L16, L17, L19 and L21 shown on the Base leads of the IF amplifiers. Although drawn as a R/L circuit, they are small Ferrite Beads which are slipped over the transistor Base leads before the transistors are inserted in their sockets. At normal IF frequencies, these 'beads' have no effect on the circuit. However, they effectively trap out high frequency parasitic oscillations.

The output of the last IF is applied to the primary of the Ratio Detector (T10). With a frequency modulated signal, audio frequencies will develop in the tertiary winding of T10, and will appear at pin Z.

MONO FM OUTPUT

Composite audio takes two separate paths upon leaving the ratio detector (pin Z). The primary path is through R110, C110 and to the Base of the composite amplifier (Q24). The composite signal is amplified by Q24, passes through the primary of T18 and then through the SCA trap. Note that this trap (L28)

CIRCUIT DESCRIPTION (TUNER CONT'D)

is tuned at 72 kHz for optimum performance. The audio, now with SCA information removed, travels to the tuner output (pin L) through a deemphasis network.

Some of the detected signal is shunted through the AFC switch section (SW502) to a low pass filter formed by R108 and C34. The detected signal contains audio frequencies as well as a DC component and the low pass filter (C34, R108) filters out all audio from the detected signal. The remaining DC component is used to vary the bias on SC2 - see FM RF, OSCILLATOR and MIXER. There should be no audio present at SC2.

AUTOMATIC STEREO SWITCHING

As a transmitted FM signal grows weaker, the background noise level increases. When the noise level reaches 100 mV at pin Z, stereo FM reproduction becomes objectionably noisy due to circuit requirements, although Mono FM reproduction is still clear. Therefore, the composite signal is also AC coupled to the Base of Q16. With at least 100 mV of noise at pin Z, the noise portion of the composite audio is amplified by Q16, rectified by SC12, and applied to the Base of Q26. The output of Q16 varies the Base voltage of Q 26 from -9 V (no signal, all noise) to plus 3.4 V (good, solid signal). Therefore, under weak signal conditions, Q26 is biased off and there is no 38 kHz signal to switch the multiplex diodes off. The FM MONO signal applied at the center tap of T20 passes through the multiplex matrix and appears at output pins P and Q (FM Stereo Outputs).

A marginal Stereo FM signal level could cause this receiver to switch back and forth between Mono and Stereo. SC18 rectifies the 38 kHz signal at the collector of Q26 and increases the 15 volts at C129 to approximately 30 volts. This increased voltage further biases Q26 on, which in turn would require a higher output from Q16 to turn Q26 off again. SC18, therefore, ensures that automatic MONO/STEREO switching will not take place with less than a 2.9 uV signal.

FM MUTING

The FM muting circuit has no adjustments. The circuit is completely disabled when the FM muting switch is in the "OFF" position. Switching FM muting "ON" will reduce FM off-station noise by 25 to 30 db .

With the receievr tuned off-station, there is a large amount of random noise presented to Q16 for amplification. This amplified noise is rectified by SC12, producing a negative 17 VDC at the MUTE switch. Closing this switch (SW508) applies this negative DC voltage to the Base of Q18 (Muting Amp). With Q18 biased off, R102 is, in effect, removed from the circuit. This causes the DC voltage on the anode of SC20 to increase. With SC20 reverse biased, the noise must now pass through C113 and R106 - resulting in attenuation of the noise. The Base voltage of Q24 rises, which is reflected by a decrease to 8 volts of the potential at point Y.

Upon tuning to a station with $3 u V$ or greater signal strength, the background noise is reduced, so that Q18 turns on. SC20 now switches on and passes unattenuated audio to the Base of Q24. The Base voltage of Q24 now drops, which is reflected by the point Y voltage rising to 9.9 V . This results in Q 18 being turned on still harder. Due to the voltage action at point Y, marginal signal levels will not cause the FM muting circuit to switch in and out with minor signal strength variations.
C115 and C117 slow down the muting action to prevent speaker
"pop". Q16 and SC12 are the key components for correct muting action.

STEREO INDICATOR LAMP

A 19 kHz signal is present only during a stereo broadcast - See STEREO FM. A portion of the 38 kHz signal present at the Collector of Q26 is AC coupled to the Gate of a Silicon Controlled Rectifier, SCR2. The anode of this SCR is connected to 6.3VAC through a \#45 Stereo Indicator Lamp.

With approximately $16 \mathrm{~V}(\mathrm{P} / \mathrm{P})$ of 38 kHz signal at the collector of Q26, the SCR is switched on, causing the Stereo Indicator Lamp to light.

AGC AND TUNING METER

AM AGC is developed from the IF signal at T14 secondary.
FM AGC is obtained from a "sampling" of the 10.7 IF at the collector of Q10 by C70.

The AM or FM signal is rectified by SC6 and applied to the base of Q8 through T12 and T4 secondary.

AGC adjustment consists of adjusting R48 so that the tuning meter needle rests on the first dot on the low end of the scale with no signal input.

With the AGC correctly set, the negative voltage from SC6 varies in direct proportion with the received signal strength. A strong signal will reduce the voltage on the base of Q 8 , reducing FM stage gain, and also cause Q8 emitter voltage to drop. The decrease in emitter voltage causes the tuning meter needle to deflect up-scale, and is also applied to the base of Q4 (FM Mixer) for further FM gain control.
W ith the receiver in the $A M$ mode of operation, the rectified FM signal controls Q8, and the Q8 emitter voltage is applied to the base of Q20 (AM RF Amplifier), resulting in stage gain reduction under strong signal conditions.

AM PERFORMANCE

Sensitivity for 20db S plus N/N@1400kHz
$110 \mathrm{uV} / \mathrm{M}$
$80 \mathrm{uV} / \mathrm{M}$
82 db

Sensitivity for 50 mV output @ 1400 kHz
82 db

AM OPERATION

RF signals are picked up by the first tuned circuit formed by the Ferrite rod antenna (L23) and the AM RF tuning gang section, C2F. This tank circuit is frequency selective, and allows only a narrow band of frequencies to pass. These selected frequencies are directly coupled to the Base of Q20, the AM RF amplifier. The output of Q20 passes through a second tuned circuit ($\mathrm{C} 2 \mathrm{H}, \mathrm{L} 24$) which gives even more frequency selectivity. This signal is then AC coupled to the Base of Q22, AM converter.

Q22 also acts as an oscillator, with frequency determined by a tank circuit consisting of T16 and C2K. The selected incoming frequency is mixed with the oscillator frequency to produce the 455 kHz "difference" frequency for the first AM IF stage. The selected frequency is amplified by two IF stages, detected by SC6 and coupled through C92 to the audio amplifier.

CABINET REPLACEMENT PARTS LIST

	SERVICE
DESCRIPTION	PART NO.
Bezel - Control	
- Control Overlay	$74-28947-2$
- Dial	$74-28946-3$
- Mounting Clip	$74-28944-1$
- Pushbutton	$70-28855-1$
	$74-32308-4$

DESCRIPTION	SERVICE
- Pushbutton Insert	PART NO.
- Slide Button	$74-34084-1$
Cabinet - Back Cover	$74-28751-1$
- Foot, Plastic	$85-32326-3$
	$86-91119-3$

GENERAL

This receiver has been factory aligned with precision laboratory equipment. The circuits are quite stable, and not normally subject to drift. Therefore, check all circuits for malfunctions before attempting realignment. Realign ONLY when absolutely necessary.

Maintain line voltage at $120 \mathrm{~V}, 60 \mathrm{~Hz}$ during alignment

All R.F. shields must be in place during alignment.
ALWAYS KEEP ALIGNMENT SIGNALS AT THE LOWEST USEABLE LEVEL DURING ALIGNMENT. During FM alignment maintain input signal below tuner limiting level. Note the generator attenuator setting at which further input signal increase does not increase the output. Keep the input signal below this point.

8 ohm, 50 watt non-inductive loads are required for $L 8 \mathrm{R}$ channel amplifier output terminals if speaker systems are disconnected.

Set tuning dial indicator at zero (0) on the logging scale with tuning capacitor (C 2) set at maximum capacity. NOTE: Readjusting tuning dial indicator after AM or FM alignment will make RF realignment (AM \& FM) necessary for correct station calibration.

Adjust tuning meter needle to first dot on the low end of the scale (no signal input) with thumbwheel pot $R 48$ before beginning alignment.

FM RF and IF sections must be properly aligned before beginning multiplex FM alignment.

EQUIPMENT REQUIRED:

AM:
AM signal generator capable of $400 \mathrm{~Hz}, 30 \%$ modulated, accurate signals from 455 kHz to 1610 kHz .

50 ohm IF probe - see probe \#1, pg. 22.
AC VTVM or general purpose scope capable of indicating approximately .05 volt, 400 Hz audio.

FM:

FM signal generator capable of $400 \mathrm{~Hz}, 30 \%\left(22^{\frac{1}{2}} \mathrm{kHz}\right.$ deviation) modulated, accurate signals from 87.9 MHz to 108.5 MHz .

IF sweep generator, capable of sweeping $300 \mathrm{kHz}, \quad 10.7 \mathrm{MHz}$ center frequency.

Accurate markers for $10.6,10.7$ and 10.8 MHz .

50 ohm IF probe - see probe \#2, pg. 22.
Detector probe - see probe \#3, pg. 22.
Matching 300 ohm balun or pad for RF input, unless FM signal generator has balanced 300 ohm output. See pg. 22.

VTVM with low DC scale.

General purpose scope capable of displaying IF response curve of approximately 40 mV .

MULTIPLEX FM:

Multiplex generator with the following capabilities:

1. 72 kHz (SCA) modulated signal.
2. Standard multiplex signal, 400 Hz modulation.

Oscilloscope - preferably dual trace.
Matching 300 ohm balun or pad for RF input unless multiplex generator has balanced 300 ohm output. See pg. 22.

AM ALIGNMENT

STEP	TUNING CAPACITOR SETTING	TEST EQUIPMENT HOOK-UP	GENERATOR FREQUENCY	AD JUSTMENT POINT	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
1	At point of no interference.	Generator to Pin X through probe \#1. Scope or VTVM to AM output - Pin K.	455 kHz modulated 30% with 400 Hz .	T14 T12 Bottom Top	Maximum 400 Hz Output.

NOTE: T12 resonates at two core positions. Tune both cores to outer peaks.
Repeat until further adjustment does not increase output.

2	1400 kHz	Radiate RF signal from generator. Scope or VTVM to AM output - Pin K.	1400 kHz modulated 30\% with 400 Hz .	C2L	Correct tuning dial reading at 1400 kHz .
3	600 kHz		600 kHz modulated 30% with 400 Hz .	T16	Correct tuning dial reading at 600 kHz .
Repeat steps 2 and 3 until proper tracking is achieved.					
4	1400 kHz	Radiate RF signal from generator. Scope or VTVM to AM output - Pin K.	1400 kHz modulated 30% with 400 Hz .	$\begin{array}{\|l\|} \hline \mathrm{C} 2 \mathrm{~J} \\ \hline \mathrm{C} 2 \mathrm{G} \\ \hline \end{array}$	Maximum 400 Hz Output.
5	600 kHz		600 kHz modu- lated 30% with 400 Hz .	L24 22 1.	$\begin{aligned} & \text { Maximum } 400 \mathrm{~Hz} \\ & \text { Output. } \end{aligned}$

Repeat steps 4 and 5 until further adjustments do not increase output.
When correctly aligned, this receiver will tune through a carrier at 540 kHz and 1610 kHz .

STEP	TUNING CAPACITOR SETTING	TEST EQUIPMENT HOOK-UP	GENERATOR FREQUENCY	ADJUSTMENT POINT	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
NOTE T19, T8, T6 and T4 resonate at two core positions - Tune all cores to OUTER peaks.					
1	Point of no interference.	Sweep Generator - to base of Q8 through probe \#2. Use $10.6,10.7$ and 10.8 MHz markers. Scope - to Pin V through probe \#3.	10.7 MHz sweep and markers.	(18)Pottom Top T8	Maximum gain, proper markers. See Fig. A.
2		Sweep Generator - to base of Q4 through probe \#2. Use 10.6, 10.7 and 10.8 MHz markers. Scope - same as step \#1:		T 4 $\begin{array}{l}\text { Bottom } \\ \text { T4 }\end{array}$ Top	
3		Sweep Generator - same as step \#2. Use 10.7 marker only. Scope - to Pin Z-Ratio Detector output.		T10 Bottom	Maximum gain of "S" curve.
				$\bar{T} 10 \text { Top }$	Marker centering on "S" curve. See Fig. B.
DC Voltage at Pin Z should be Zero with no signal input. Readjust top core of T10 SLIGHTLY to obtain zero, if necessary.					
4	106 MHz	Signal Generator - to FM antenna terminals Use 300 ohm pad or balun, if necessary, for balanced input. Scope - to Pin L - Mono FM output.	106 MHz modulated 30\% ($221 / 2 \mathrm{kHz}$ dev.) at 400 Hz .	C 28	Maximum output $(400 \mathrm{~Hz})$ at 106 MHz .
5	90 MHz		90 MHz modulated 30\% ($22 \frac{1}{2} / 2 \mathrm{kHz} \mathrm{dev}$.) at 400 Hz .	L14	Maximum output $(400 \mathrm{~Hz})$ at 90 MHz .
Repeat steps 4 and 5 until proper tuning dial tracking is achieved.					
6	106 MHz	Signal Generator - same as step 4. Scope - same as step 4.	Same as step 4.	C2D C2B	Maximum 400 Hz Output.
7	90 MHz		Same as step 5.	$\begin{array}{\|l\|} \hline \mathrm{L} 10 \\ \hline \mathrm{~L} 21 \\ \hline \end{array}$	Maximum 400 Hz Output.
Repeat steps 6 and 7 until further adjustment does not increase output.					
The AFC should "pull in" a FM station equally well on both sides of the center frequency when switched on. If it does not do so, recheck alignment.					
8	Off-station.	Scope to Pin L - Mono FM Output Operate SW508-Mute switch. Noise signal will drop $25-30 \mathrm{db}$ with muting action.			
When correctly aligned, this receiver will tune through a carrier at 87.9 MHz and 108.5 MHz .					

STEP	TEST EQUIPMENT HOOK-UP	GENERATOR FREQUENCY	ADJUSTMENT POINT	$\begin{aligned} & \text { AD JUST } \\ & \text { FOR } \end{aligned}$
SCA TRAP ALIGNMENT				
1	Multiplex Generator to Antenna Terminals - Use 300 ohm pad or balun if needed. Scope to Pin Y.	72 kHz	L28	MINIMUM RESPONSE
19 kHz PILOT ALIGNMENT				
2	Multiplex Generator - same as step \#1. Scope to Pin CC.	$10 \% 19 \mathrm{kHz}$ Pilot, modulation off.	T18 $\begin{array}{l}\text { Bottom } \\ \text { Top }\end{array}$ T18 T20	MAXIMUM 38 kHz , see schematic.
NOTE: T18 resonates at two core positions. Tune both cores to OUTER peaks.				
MULTIPLEX SWITCHING				
3	Multiplex Generator - same as step \#1. Scope to Pins P and Q. Use input signal level of 200 uV .	Full Multiplex signal, one channel modulated.	T20	Best channel separation.

Probe \#1. 50 Ohm I.F. Probe (AM)	Matching 300 Ohm Balun
Probe \#2. 50 Ohm I.F. Probe (FM)	Matching 300 Ohm Pad
Probe \#3 - Detector Probe	Figure: A Figure: B

Printed in U.S.A.

